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Abstract—In the present paper, the collision of two elastic
spherical shells is investigated using the wave theory of impact.
The model developed here suggests that after the moment of
impact quasi-longitudinal and quasi-transverse shock waves are
generated, which then propagate along the spherical shells. The
solution behind the wave fronts is constructed with the help
of the theory of discontinuities. Since the local bearing of the
materials of the colliding elastic shells is taken into account, then
the solution in the contact domain is found via the Hertz contact
theory.

I. INTRODUCTION

The problems connected with the analysis of the shock
interaction of thin bodies (rods, beams, plates, and shells) with
other bodies have widespread application in various fields of
science and technology. The physical phenomena involved in
the impact event include structural responses, contact effects
and wave propagation. These problems are topical not only
from the point of view of fundamental research in applied
mechanics, but also with respect to their applications. Because
these problems belong to the problems of dynamic contact in-
teraction, their solution is connected with severe mathematical
and calculation difficulties. To overcome this impediment, a
rich variety of approaches and methods have been suggested,
and the overview of current results in the field can be found
in recent state-of-the-art articles by Abrate [1], Rossikhin and
Shitikova [2], and Qatu et al. [3].

In many engineering applications, it is important to under-
stand the transient behaviour of isotropic as well as composite
thin-walled shell structures subjected to central impact not only
by a small projectile but by another shell as well. The problem
on impact of a rigid body against an elastic spherical shell has
been repeatedly considered by different authors using disparate
models of shock interaction (the overview of the papers in
the field could be found in [2] and [4]), elastic spherical
shell impacted with an elastic barrier has been considered
in [5], while the nonlinear collision of two shells, to the
authors’ knowledge, has not been yet analyzed analytically
in the literature. The only paper considering the analysis of
two colliding fractionally damped spherical shells in modelling
blunt human head impacts has been recently appeared [6],
wherein the contact force is represented using linear approach
via fractional derivative standard linear solid model.

Recently Rossikhin and Shitikova [7] have developed a
new formulation of the ray method which is applicable for
analyzing the propagation of surfaces of strong and weak
discontinuity in thin elastic bodies when the wave fronts and
the rays are referenced to the curvilinear system of coordinates.
It should be noted that the ray method is primarily used for

obtaining the problem solution analytically. This approach is
based on the reduction of the three-dimensional equations of
the dynamic theory of elasticity, which first should be written
in discontinuities, to the two-dimensional equations by virtue
of integration over the coordinate perpendicular to the middle
surface of a thin body. The recurrent equations of this ray
method are free from the shear coefficient, which is usually
inherent to the Timoshenko type theories, and involve only
two elastic constants: Poisson’s ratio and elastic modulus of
elongation.

The theory proposed in [7] is applicable for short times
after the passage of the wave front, but it possesses the
simplicity inherent in the “classical” theory of thin bodies.
The advantages of this approach have been readily illustrated
by solving the engineering problems on normal impact of
an elastic thin cylindrical and spherical projectiles against an
elastic spherical shell, respectively, in [8] and [9]. Nonlinear
Hertz’s theory was employed within the contact region, re-
sulting in the nonlinear differential equation with respect to
the value characterizing the local indentation of the impactor
into the target, the analytical solution of which was found
in terms of time series with integer and fractional powers. It
has been shown that the contact duration and the peak of the
contact force gradually decrease for increasing shell curvature.
The similar conclusion concerning the contact duration can be
found in [10].

In the present paper, the analytical approach proposed in [4]
for the analysis of the dynamic response of the elastic isotropic
spherical shell subjected to the impact by elastic spherical and
long cylindrical hemisphere-nose projectiles has been extended
to the problem of the collision of two elastic spherical shells.

II. PROBLEM FORMULATION

In order to model the dynamic response of two colliding
spherical shells, let us consider two spherical shells moving
one after another along the line intersecting their centers of
gravity with the velocities V01 and V02, in so doing the velocity
of the second shell V02 is larger than that of the first one V01.
The shells’ radii R1 and R2, their densities %1 and %2, and
elastic constants of the materials they are made of are different.
The impact occurs at the moment t = 0. At the moment of
impact, at the point of tangency (or of contact) of the two
spheres, two shock waves (surfaces of strong discontinuity)
are generated which then propagate along spherical surfaces
with the velocities of elastic waves. Behind the waves fronts,
the solution could be constructed in terms of one-term ray
expansions obtained via the theory of discontinuities.
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Fig. 1. Scheme of the Elastic Central Impact of Two Spherical Shells

The form of the solution within the contact domain, the
dimension of which in the general case is a function of time,
depends on the type of the material the colliding bodies are
made of. Thus, in the case of the collision of two elastic
spherical shells (Figure 1), the solution in the contact domain
could be found using Hertz’ theory.

III. GOVERNING EQUATIONS

Since at the moment of impact, two shock waves (surfaces
of strong discontinuity) are generated at the point of tangency
(or the point of contact) of the two colliding spheres, which
then propagate along spherical surfaces with the velocities
of elastic waves, then behind the waves fronts the solution
could be constructed in terms of one-term ray expansions [7]
obtained via the theory of discontinuities [2].

A. The Main Kinematic and Dynamic Characteristics of the
Wave Surface

To construct the ray expansions, we shall use two con-
ditions of compatibility for the values to be found [11]: the
geometric condition of compatibility

[ui,j ] =
[

dui
dn

]
λj +

[
d(uiξj)

dξ

]
, (1)

and the kinematic condition of compatibility

[vi] = −
[

dui
dn

]
G, (2)

in so doing the geometric condition of compatibility is written
with due account for the fact that the wave surface represents
itself a ‘wave–strip’ (Figure 2).

Here ui are the displacement vector components, vi =
∂ui/∂t, G is the normal velocity of the wave surface, xi are
the spatial rectangular coordinates, t is the time, d/dn is the
derivative with respect to the normal to the wave surface, ξ
is the coordinate directed along the normal to the spherical
shell, λi and ξi are the components of the unit vectors ~λ
and ~ξ directed along the normal to the wave and spherical
surfaces, respectively, [Z] = Z+ − Z− is the discontinuity in
the desired field Z, where “+” and “–” denote that the given
value is calculated “ahead of” and “behind” the surface of
strong discontinuity, and Latin indices take on the values 1,2,3.

Fig. 2. Scheme of the Propagating Wave–strip along the Spherical Shell
Surface

Eliminating the value [dui/dn] from (1) and (2), we find

[ui,j ] = −G−1[vi]λj +
[

d(uiξj)
dξ

]
. (3)

Writing the Hooke’s law for a three-dimensional medium
in terms of discontinuities and using the condition of compat-
ibility (3), we have

[σij ] = −G−1λ[vλ]δij −G−1µ ([vi]λj + [vj ]λi)

+ λ[uξ,ξ]δij + µ

([
d(uiξj)

dξ
+

d(ujξi)
dξ

])
, (4)

where [σij ] are jumps of the stress tensor components, λ and
µ are Lamé constants, δij is the Kronecker’s symbol,

[vλ] = [vi]λi, [uξ,ξ] =
[

d(uiξi)
dξ

]
=
[

duξ
dξ

]
.

Multiplying relationship (4) from the right and from the
left by ξiξj and considering equation

[σξξ] = [σij ]ξiξj = 0,

what corresponds to the assumption that the normal stresses on
the cross-sections parallel to the middle surface of the spherical
shell could be neglected with respect to other stresses, we find

[uξ,ξ] =
λ

G(λ+ 2µ)
[vλ]. (5)

Multiplying (4) from the right and from the left by λiλj ,
we are led to the equation

[σλλ] = [σij ]λiλj = −G−1(λ+ 2µ)[vλ] + λ[uξ,ξ]. (6)

Substituting (5) in (6) yields

[σλλ] = −4µ(λ+ µ)
λ+ 2µ

G−1[vλ],

or
[σλλ] = − E

1− σ2
G−1[vλ], (7)

where σ is the Poisson’s ratio.

Alternatively, multiplying the three-dimensional equation
of motion written in terms of discontinuities

[σij ]λj = −ρG[vi], (8)
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by λi, we obtain
[σλλ] = −ρG[vλ], (9)

where ρ is the density of the shell’s material.

Eliminating the value [σλλ] from (7) and (9), we find
the velocity of the quasi-longitudinal wave propagating in the
spherical shell

G1 =

√
E

ρ(1− σ2)
. (10)

Relationship (7) with due account for (10) takes the form

[σλλ] = −ρG1[vλ]. (11)

Multiplying (4) by λiξj and (8) by ξi, we have

[σλξ] = [σij ]λiξj = −µG−1[vξ], (12)

[σλξ] = −ρG[vξ], (13)

where [vξ] = [vi]ξi.

Eliminating the value [σλξ] from (12) and (13), we find the
velocity of the quasi-transverse wave

G2 =
√
µ

ρ
. (14)

Considering (14), relationship (12) takes the form

[σλξ] = −ρG2[vξ]. (15)

B. Construction of One-term Ray Expansions

Behind the front of each of two transient waves (surfaces of
strong discontinuity) upto the boundary of the contact domain
(Figure 1) relationships (11) and (15) are valid, which are the
first terms of the ray expansions for the values σλλ, σλξ, vλ,
and vξ (Figure 3). Thus, within the entire disturbed domain it
could be approximately considered that

σ−λλ = −ρG1v
−
λ , (16)

σ−λξ = −ρG2v
−
ξ . (17)

Knowing v−λ , and v−ξ , σ−λλ, and σ−λξ, it is possible to
calculate v−z , and v−r , and σ−rz according to the following
formulas:

v−z = v−ξ

√
1− a2

R2
− v−λ

a

R
, (18)

v−r = v−ξ
a

R
+ v−λ

√
1− a2

R2
, (19)

σ−rz = −σ−λλ
a

R

√
1− a2

R2
+ σ−λξ

(
1− 2

a2

R2

)
, (20)

where a is the radius of the contact spot.

Considering the cone angles of the contact spot 2γ1 and 2γ2

as small values, and putting cos γα ≈ 1, sin γα ≈ γα = aR−1
α ,

Fig. 3. Scheme of Velocities and Stresses in the Shell’s Element on the
Boundary of the Contact Domain

we obtain from (18)–(20)

ṽz = ṽξ − ṽλ
a

R
, (21)

ṽr = ṽξ
a

R
+ ṽλ , (22)

σ̃rz = ρ
(
G1ṽλ

a

R
−G2ṽξ

)
, (23)

where a tilde over a value labels that the corresponding value
is calculated on the boundary of the contact domain, i.e. at
r = a, and r, θ, z = x3 is the cylindrical set of coordinates
with a center at the initial point of contact of two spherical
shells (Figure 3).

IV. CENTRAL IMPACT OF TWO ELASTIC SPHERICAL
SHELLS

In the case of the collision of two elastic spherical shells
(Figure 1) the solution in the contact domain could be found
using Hertz’ theory. Thus, according the Hertzian law the
contact force is defined as

Fcont = kα3/2, (24)

where α is the local bearing of the shells’ materials, the indices
1 and 2 refer to the first and second shells, respectively,

k =
4
3

√
R′

k1 + k2
,

1
R′

=
1
R1

+
1
R2

, ki =
1− σ2

i

Ei
(i = 1, 2)

Then the equations of motion of the contact domain of two
spherical shells could be written in the form

ρ1πa
2h1

˜̇vz1 = 2πah1σ̃rz1 + kα3/2 , (25)

ρ2πa
2h2

˜̇vz2 = 2πah2σ̃rz2 − kα3/2 , (26)

where an overdot denotes the time-derivative.
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In order to calculate the values σ̃rzα, let us use formulas
(21)–(23) and consider that ṽr = ȧ. As a result we obtain

σ̃rzα = ρα

(
G

(α)
1 −G(α)

2

) (a2).

2Rα

− ρα

(
G

(α)
1

a2

R2
α

+G
(α)
2

)
ṽzα . (27)

Substituting (27) in (25) and (26) and considering that
ȧ = R′α, we find

ρ1πR
′αh1

˜̇vz1 = 2πR′1/2α1/2h1ρ1

[(
G

(1)
1 −G

(1)
2

) R′

2R1
α̇

−
(
G

(1)
1

R′

R2
1

α+G
(1)
2

)
ṽz1

]
+ kα3/2, (28)

ρ2πR
′αh2

˜̇vz2 = 2πR′1/2α1/2h2ρ2

[(
G

(2)
1 −G

(2)
2

) R′

2R2
α̇

−
(
G

(2)
1

R′

R2
2

α+G
(2)
2

)
ṽz2

]
− kα3/2. (29)

The following equation

ṽz2 − ṽz1 = α̇− V (30)

should be added to equations (28) and (29), where

V = V02 − V01.

The closed system of three equations (28)–(30) allows one
to determine the desired values: ṽz1, ṽz2, and α̇.

It should be noted that the set of three equations (28)–(30)
could be reduced to a set of two equations after the substitution
of the independent variable, i.e., the substitution of t by α. In
this case, considering (30) it could be written

ṽz1 =
ṽz1
dα

α̇ =
ṽz1
dα

[(ṽz2 − ṽz1) + V ] , (31)

ṽz2 =
ṽz2
dα

α̇ =
ṽz2
dα

[(ṽz2 − ṽz1) + V ] . (32)

Then, in view of (31) and (32), equations (28) and (29)
take the form

α1/2 ṽz1
dα

(ṽz2 − ṽz1 + V )

= 2R′−1/2
[(
G

(1)
1 −G

(1)
2

) R′

2R1
(ṽz2 − ṽz1 + V )

−
(
G

(1)
1

R′

R2
1

α+G
(1)
2

)
ṽz1

]
+

kα

πh1ρ1R′
, (33)

α1/2 ṽz2
dα

(ṽz2 − ṽz1 + V )

= 2R′−1/2
[(
G

(1)
1 −G

(1)
2

) R′

2R2
(ṽz2 − ṽz1 + V )

−
(
G

(1)
1

R′

R2
1

α+G
(1)
2

)
ṽz2

]
+

kα

πh1ρ1R′
. (34)

Equations (33) and (34) are more suitable for numerical
analysis than equations (28) and (29), and allow one to find
ṽz1 and ṽz1 as functions of α.

A. Solution in the Case of the Collision of Two Similar
Spherical Shells

Suppose that the spherical shells are made of the same
material and have equal dimensions, i.e. ρ = ρ1 = ρ2, h =
h1 = h2, G1 = G

(1)
1 = G

(2)
1 , G2 = G

(1)
2 = G

(2)
2 , and R′ =

1/2 R. Then subtracting (28) from (29) with due account for
(30), we have

αα̈ +
2
√

2√
R

(
G1

1
2R

α+G2

)
α1/2α̇+

4k
ρπhR

α3/2

=
2
√

2√
R

(
G1

1
2R

α+G2

)
α1/2V. (35)

We will seek a solution of (35) in the form of the following
series with respect to time t:

α = V t+
∞∑
i=1

cit
(2i+1)/2 +

∞∑
j=2

djt
j , (36)

where ci and dj are coefficients to be determined.

Substituting (36) into Eq. (35) and equating the coefficients
at integer and fractional powers of t, we are led to the set of
equations for defining the coefficients ci and dj . For example,
the first seven of them have the form

c1 = d2 = c3 = 0, c2 = −16
15

k

ρπhR
V 1/2 < 0

d3 =
8
√

2
9

kG2

ρπhR3/2
> 0

d4 =
4
45

kV

ρπhR2

(
5
√

2G1√
R

+
6k

ρπhV

)
> 0

c4 =
4
√

2
63

c2G2

R3/2V

[
3k
ρπh

+
5
√

2
3

V G1√
R

]
< 0

and thus the function α is written as

α = V t+ c2t
5/2 + d3t

3 + d4t
4 + c4t

9/2. (37)

Substitution of (37) in (24) allows one to determine the
contact force in this case.

If we limit ourselves by the first two terms in (37), i.e.,
utilize only the quasi-static approximation, then we can obtain
the first approximations for the contact time tcont and the time
tmax when the contact force attains its maximal magnitude
Fmax = kα

3/2
max :

tcont =
(
− V

c2

)2/3

=
(

15
16

ρπhRV 1/2

k

)2/3

, (38)

tmax =
(

3
18

ρπhRV 1/2

k

)2/3

, (39)

Fmax =
9
√

3
40
√

5
ρπhRV 2

≈ 0.174 ρπhRV 2. (40)
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Reference to Eqs. (38)–(40) shows that the maximum of
the contact force and the duration of contact depend only on
the difference of velocities V = V02−V01 and are independent
of the velocities of the transient waves propagating in the
colliding bodies. To take them into account, it is necessary
to use the series (36) for the value α involving at least its five
or more terms.

B. Solution in the Case of Different Shells without Regard for
the Inertia of the Contact Domain

If the inertia of the contact spot is neglected in Eqs. (28)
and (29), then they could be rewritten in the form

a1α̇− ṽz1 + b1α = 0, (41)

a2α̇− ṽz2 − b2α = 0, (42)

where

aα =

(
G

(α)
1 −G(α)

2

)
R′(2Rα)−1

G
(α)
1 R′R−2

α α+G
(α)
2

,

and

bα =
k

2π
√
R′hαρα

(
G

(α)
1 R′R−2

α α+G
(α)
2

) .
Subtracting (41) from (42) with due account for (30) yields

α̇+
b1 + b2

1− (a2 − a1)
α =

V

1− (a2 − a1)
. (43)

Since α is a small value, then it is possible to neglect the
value G1R

′R−2
α α as compared with the magnitude of G2; the

values a1 and a2 are smaller than unit, that is why the value
a2−a1 could be ignored with respect to the unit. Then Eq. (43)
takes the form

α̇+ (b1 + b2)α = V, (44)

where b1 and b2 are constants.

Integrating Eq. (44) and considering the initial conditions

α|t=0 = 0, α̇|t=0 = V, (45)

we find

α =
V

b1 + b2

(
1− e−(b1+b2)t

)
. (46)

Note that the law of variation in the local bearing (the law
of the force changes) defined by (46) qualitatively coincides
with the form of AGB curve presented in Figure 45 in [12],
wherein the characteristic law of the force changes during the
contact of two spherically-headed rods is shown.

The local bearing of two colliding spherical shells increases
until the moment when reflected waves (waves of ‘unloading’)
return to the contact zone. Each of the reflected waves unloads
the contact domain, resulting in the rebound of contacting
shells.

V. CONCLUSION

In the present paper, the collision of two elastic spherical
shells is investigated considering that the impact process is
accompanied by the generation and propagation of quasi-
longitudinal and quasi-transverse shock waves, amplitudes of
which are proportional to sin−1/2 ϕ [7]. If the contact zone is
located at ϕ = 0, then at ϕ = π, i.e., on the other end of the
diameter, there could occur the focusing of these waves.

The solution behind the wave fronts has been constructed
with the help of the theory of discontinuities under the assump-
tion that the reflected waves approach the contact zone after
the termination of the impact process. Since the local bearing
of the materials of the colliding elastic shells has been taken
into account, then the solution in the contact domain has been
found via the Hertz contact theory.
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